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LE’ITER TO THE EDITOR 

Finite-size scaling and the two-dimensional XY model 

J M Luck 
Service de Physique ThBorique, CEN-Saclay, BP No 2, 91191 Gif-sur-Yvette, Cedex, 
France 

Received 4 December 1981 

Abstrad. We show that the finite-size scaling assumption, and particularly a conjectured 
relation involving the ,exponent q, are valid in the low-temperature phase of the 2D XY 
model, order by order in a perturbative expansion of the two-point correlation function. 

1. Introduction 

The finite-size scaling hypothesis was first formulated by Fisher (1972). It has been 
used in various domains of statistical mechanics, in order to extrapolate to the 
thermodynamical limit results concerning finite systems (Monte Carlo method) or 
systems which are infinite in only one dimension (transfer matrix method). The latter 
procedure has mostly been applied to 2D systems: the partially infinite systems are 
then strips of width N. This method, introduced by Nightingale (1976) for the Ising 
model, was generalised to various models: self-avoiding walk (Derrida 198 l) ,  percola- 
tion (Derrida and Vannimenus 1980, Kinzel and Yeomans 1981), O(2)-Heisenberg 
(or XU) model (Hamer and Barber 1981), Anderson localisation problem (Pichard 
and Sarma 1981), roughening transition (Luck 1981a, b), etc. These last three cases 
exhibit an infinite-order Kosterlitz-Thouless transition, and possess a whole line of 
fixed points. 

The general framework of finite-size scaling was shown to be valid in every dimension 
d < 4 for q54-type theories (BrCzin 1982). Our aim is to show that the same scaling 
behaviours hold for d = 2 along the ‘gaussian fixed line’, i.e. for a continuous infinity 
of critical points. 

2. The model 

We use the XY model, defined by the action 

where the sum runs over nearest-neighbour pairs of sites on a 2D square lattice; the 
spacing a is equal to unity. 

Kosterlitz and Thouless (1973; Kosterlitz 1974) proved that the region4 s T d T, 
corresponds to the ‘gaussian fixed line’ mentioned above. 
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We consider the two-point correlation function 

T(L) = (exp i(e0 - e,)) ( 2 )  
in the following two geometries: 

(A) infinite 2 0  lattice: (2) will be denoted T&); 
(B) sfrip offinite width N (we consider only longitudinal correlations: the vector 

Let us recall the results for (2) in the case of the Ising model at T = T,. The 
L is parallel to the direction of infinite length): (2) will be denoted rN(L) 

expressions given in Nightingale (1976) lead easily to 

where the values of a and 7 are 
1 a = 4/7r, 77 =z.  (4) 

3. Low-temperature expansion 

We introduce the Fourier transform 

The measure in momentum space depends on the geometry: 

The power series expansion of the cosine, and a field rescaling cp = T-’”@, lead to a 
bare propagator 

- 1  

..@) = (cp,Cp-,> = (21 (1 -cos PJ) 
&l 

and to interaction terms 

-sM =- 
~ M - 2 / 2  

M !  

x c ( 2  sin . . . (2  sin $) 
(I 

where M = 4,6, 8, . . . is an arbitrary even integer. 
The calculation of (2) is equivalent to the introduction of the following source term: 

-6s = i[e(O) - e (L) ]  = iT”’ Gcp,[l -exp(-ip21)]. (7)  I 
The quantity In T(L) is the sum of all connected graphs with a non-zero even number 
of sources. 
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4. Leading-order results 

The lowest-order contribution is equal to the free field graph go (figure 1) 

1 - cos p2L In r(o)(L) = -T J 
2 z, (1-cosp,)' 

In the following, In r(L) will denote the dioergent part of (2)  as L -00, and the 
superscript (0) means : in leading-order approximation. 

- - 
Figare 1. The leading-order (free field) contribution to the two-point function. 

The infrared divergences of (8) depend on the geometry: in the case (A), the 
propagator can be replaced by l/p2, which leads to 

In r!?(L) = - (~ /27r )  In L; (9) 

In = -TL/2N. (10) 

in the case (B), the only term to contribute is the one corresponding to P I =  0, 

These results are analogous to those of the king model (3), with 

acO)= 2 /T  and 77") = T/27r. 

When L and N are both large and comparable, we have a scaling behaviour interpolat- 
ing between (9) and (10): let us consider the quantity 

2 1 "  dp2 ~-COSPZL 
T $(L, N) = - - In l$)(L) = - 

27r );, (1 -cos pJ 
Integration over p2 leads to 

with sinh Xn/2  =sin 7rn/N, or cosh X,, +cos 27rnlN = 2. 
This sum can be rearranged in the form 

'(L, N) = L/N + 21 + Z2 + &, 
where 

2 c (---) 1 N 
= l<n<NIZ sinh X,, 2 m  (9 

has a finite limit when N goes to infinity: 

(ii) Xz=- 1 -=-[lny+y+o($)] 1 1  N 
7 r l ~ n ~ N l 2 n  IT 
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( y  is Euler’s constant). 

is dominated by the lowest values of n, where we have 

n 
N 

x, = 27r-+ o ( i / ~ ~ )  

and then 

X2 = (1/7r) ln[l -exp ( - 2 7 r L / N ) ] + 0 ( 1 / N 2 ) .  

We have obtained the scaling behaviour 

4 ( t ,  N )  = (1/7r) In N + cp ( L / N )  + 0 (1/N) 

with (11) 
- 

1 
q ( x )  = - 7r In ( *sinh 7r 27rx) 

The expansions of cp around x = 0 and x = 00 give respectively (9) and (10) again. 

5. Higher orders 

In order to study the infrared divergences of a general graph, let us investigate first 
the integrations on internal lines. Let k be the momentum of one of them (figure 2) .  

k 

ii Y 
- - e 

12148 Figure 2. A typical internal line. 
12149 

The corresponding integrand is 

sin i k ”  * sin ik’/; sin2 ik”. 

This quantity is always less than unity (in absolute value). The measure on the Brillouin 
zone being normalised, we can therefore deduce the following: 

(1) no divergence is due to internal lines; 
( 2 )  the limit of a (B) graph when N tends to infinity is equal to the corresponding 

We are only left with star-like graphs, as represented in figure 3. Their contribution 
(A) graph, by obvious continuity reasons. 

reads 
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Flgnre 3. The general star-like graph, with M external sources and no loop. 

(3) These integrals are manifestly uv convergent. 
(4) Their infrared behavour is obtained by usual power counting: their superficial 

We can conclude that the divergent part of (2) is entirely given by the graphs with 
IR convergence degree is SM = M - 2. 

two external sources. Their general shape is given in figure 4. 

12152 F i p e  4. The general shape of IR divergent graphs. 

Let IK(0)cru be the value of the Kth irreducible subgraph IK at zero (external) 
momentum, for given external indices ,U and v. Symmetry implies 

IK (0)wu = S w J K  (0) * 

We have then 

All propagators disappear, except one of them, and we find 

where go is the lowest-order result (8) and the Ts are all irreducible sugraphs of g. 
Resummation of (12) is formally very simple. Let f ( T )  be the power series 

where the sum runs over all irreducible graphs. Then we obtain 

In rN(L) = (1 - f (~ ) ) - ’  In rg)(L). (14) 
We conclude from the above discussion that the divergent part of the correlation 
function factorises: 

one factor is the free-field (or gaussian) result (9)-(1 l), 
the other is a temperature renormalisation. 
As a consequence of this very simple formula, we have proved (to all orders in 

T) that 
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where a and q depend on a single function f :  

a (T)  = 2[1 -f(T)I/T, v (T)=  T/2.rr[l -f(T)I. (15) 

The product of these quantities is then constant: 

aq = l/.rr. (16) 

This relation which is also true for the Ising model at T = T, (see (4)), has been 
conjectured to be valid for several 2D models: percolation and the Potts model 
(Derrida and De S&ze 1982), and was used to extract the exponent v(T) from 
strip-method data in localisation (Pichard and Sarma 198 1) and surface roughening 
(Luck 1981a, b) problems. 

6. Expansion up to T3  and value of T, 

The graphs which contribute to the function f(T) up to order T are given in figure 5. 
A large number of these low-order graphs can be evaluated by means of symmetry 

properties: for example, let us consider the only one-loop graph gl, 

&, 4 sin2 t k ,  ' 
T d7; -4 sin2 t k l  

g1= -- 2 

The similar integral corresponding to the second component would of course be equal 
to gl, which implies that gl = T/4. 

Order 1 g, 

Order T 2  g2 

4, 

g' 

Order 1' g3 

95 

9- 

98 

8 
,----. 
W 

6b 
13 
e 

114 

-1132 

1 /16  

l i b 8  

1 1 3 8 1  

-< I128  

-1164 

-11192 

+?- 

a- 
1 ; 5 4  

' l ; O 2  

1 / 6 4  

116L  

see 1171 
I 

Figure 5. All graphs contributing to the temperature-renormalisation function f c  T )  up 
to order T 3 .  
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Analogous symmetry considerations enable us to compute all graphs shown in 
figure 5, except 8 1 3  and g14.  The contributions of these last two ones were computed 
in configuration space. We had to evaluate lattice sums of two functions rp and (I 
related to the propagator U (x): 

T3 T3 
g 1 3 = - - c  24 x [ ~ * ( x ) f ( 1 4 ( X ) 1 = - ~ Y 1 3 ,  

(17) 
T3 T3 

g 1 4  =- [cp2(x>+(I.2(x)l[(P2(Y)+J/2(Y)1rp(x - Y )  = 4 7 1 4 ,  
4 1;Y 

with 

&)= - f [ 2 a ( x ) - u ( r + l ) - a ( x - l ) ] ,  

(I(x) = -i[u(x + 1 - 2) - a  (x + 1) - U  (x - 2) + a(x>].  

The propagator a(x )  can be constructed by means of explicit recursion relations, as 
explained in Spitzer (1976). 

The sums in (17) are very rapidly converging towards the numbers 

7 1 3  = 0.068 309 8662, y 1 4  0.043 727 2207. 

The resulting expansion of f (  T) is then 

f(T) = $T +&TZ+f3T3 +O(T4) (18) 
with 

f3 = 0.034 127 2266. 

In order to test this expansion, we looked for the value of T, in the following 
manner. We know from Kosterlitz and Thouless (1973) and Kosterlitz (1974) that .II 
has an algebraic singularity at T = T,: 

,,(TI + a ( ~ c -  T)~/*.  (19) 
We then expanded the quantity (a- 7)’ in powers of T, using (15) and (18), and 

We give the values T?) obtained by a truncation of f (  T) at order T” : 
determined the first real zero of the polynomial. 

Tt = 0.7854, T:) = 0.8328, Tr2’ = 0.8655, Tr3’ = 0.8785. (20) 

These numbers converge rather well towards a value of T, J 0.90, to be compared 
with the best estimate we know: T, = 0.900*0.006, based on the high-temperature 
expansion (Betts et a1 1971). 

7. Conclusion 

We proved that the scale invariant low-temperature phase of the XY model is 
described by one single T-renormalisation function f. This implies that the scaling of 
correlations (ll), and in particular the relation (16), are valid in the whole phase 
T =s T,. This approach is also quantitatively correct (20), but any extrapolation of so 
short an expansion needs some amount of added information (19). 

It is a pleasure to thank E BrCzin, B Derrida and C Itzykson for fruitful discussions. 
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